Matangazo

Hatua ya Karibu na Kompyuta ya Quantum

Msururu wa mafanikio katika kompyuta ya quantum

Kompyuta ya kawaida, ambayo sasa inajulikana kama kompyuta ya kitamaduni au ya kitamaduni hufanya kazi kwa dhana ya msingi ya sekunde 0 na 1 (zero na zile). Tunapouliza kompyuta kufanya kazi kwa ajili yetu, kwa mfano kukokotoa hisabati au kuhifadhi miadi au kitu chochote kinachohusiana na maisha ya kila siku, kazi hii kwa wakati husika inabadilishwa (au kutafsiriwa) kuwa mfuatano wa sekunde 0 na 1 (ambao wakati huo huitwa pembejeo), ingizo hili linachakatwa na algorithm (inafafanuliwa kama seti ya sheria zinazopaswa kufuatwa ili kukamilisha kazi kwenye kompyuta). Baada ya uchakataji huu, mfuatano mpya wa sekunde 0 na 1 hurejeshwa (unaoitwa matokeo), na hii husimba kwa matokeo yanayotarajiwa na kutafsiriwa katika taarifa rahisi zaidi ya kirafiki kama "jibu" kwa kile ambacho mtumiaji alitaka kompyuta ifanye. . Inashangaza kwamba haijalishi algoriti inaweza kuonekana kuwa ya busara au ya werevu kiasi gani na chochote kinaweza kuwa kiwango cha ugumu wa kazi, algoriti ya kompyuta hufanya jambo hili moja tu - kudhibiti msururu wa biti - ambapo kila biti ni 0 au 1. kudanganywa hufanyika kwenye kompyuta (mwisho wa programu) na kwenye kiwango cha mashine hii inawakilishwa na nyaya za umeme (kwenye ubao wa mama wa kompyuta). Katika istilahi ya vifaa wakati sasa inapita kupitia nyaya hizi za umeme, imefungwa na inafunguliwa wakati hakuna sasa.

Kompyuta ya Classical Vs Quantum

Kwa hiyo, katika kompyuta za classical, kidogo ni habari moja ambayo inaweza kuwepo katika hali mbili iwezekanavyo - 0 au 1. Hata hivyo, ikiwa tunazungumzia kuhusu quantum kompyuta, kawaida hutumia bits za quantum (pia huitwa 'qubits'). Hizi ni mifumo ya quantum iliyo na majimbo mawili, hata hivyo, tofauti na biti ya kawaida (iliyohifadhiwa kama 0 au 1), qubits inaweza kuhifadhi habari zaidi na inaweza kuwepo katika dhana yoyote ya maadili haya. Ili kuelezea kwa njia bora zaidi, qubit inaweza kuzingatiwa kama nyanja ya kufikiria, ambapo qubit inaweza kuwa sehemu yoyote kwenye tufe. Inaweza kusemwa kuwa kompyuta ya quantum inachukua fursa ya uwezo wa chembe ndogo za atomiki kuwepo katika hali zaidi ya moja kwa wakati wowote na bado kuwa za kipekee. Kwa upande mwingine, bit classical inaweza tu kuwa katika majimbo mawili - mfano mwishoni mwa miti miwili ya nyanja. Katika maisha ya kawaida hatuwezi kuona 'superposition' hii kwa sababu mara tu mfumo unapotazamwa kwa ukamilifu wake, viambishi hivi hutoweka na hii ndiyo sababu uelewa wa dhana hizo kuu haueleweki.

What this means for the computers is that quantum computers using qubits can store a huge amount of information using lesser energy than a classical computer and thus operations or calculations can be relatively done much faster on a quantum computer. So, a classical computer can take a 0 or 1, two bits in this computer can be in four possible states (00, 01, 10 or 11), but only one state is represented at any given time. A quantum computer, on the other hand works with particles that can be in superposition, allowing two qubits to represent the exact same four states at the same time because of the property of superposition freeing up the computers from ‘binary constraint’. This can be equivalent to four computers running simultaneously and if we add these qubits, the power of the quantum computer grows exponentially. Quantum computers also take advantage of another property of quantum physics called ‘quantum entanglement’, defined by Albert Einstein, entanglement is a property which allows quantum particles to connect and communicate regardless of their location in the ulimwengu so that changing the state of one may instantaneously affect the other. The dual capabilities of ‘superposition’ and ‘entanglement’ are quite powerful in principle. Therefore, what a quantum computer can achieve is unimaginable when compared to classical computers. This all sounds very exciting and straightforward, however, there is problem in this scenario. A quantum computer, if takes qubits (superposed bits) as its input, its output will also be similarly in a quantum state i.e. an output having superposed bits which can also keep changing depending on what state it is in. This kind of output doesn’t really allow us to receive all the information and therefore the biggest challenge in the art of quantum computing is to find ways of gaining as much information from this quantum output.

Kompyuta ya Quantum itakuwa hapa!

Quantum computers can be defined as powerful machines, based on the principals of quantum mechanics that take a completely new approach to processing information. They seek to explore complex laws of nature that have always existed but have usually remained hidden. If such natural phenomena can be explored, quantum computing can run new types of algorithms to process information and this could lead to innovative breakthroughs in materials science, drug discovery, robotics and artificial intelligence. The idea of a quantum computer was proposed by American theoretical physicist Richard Feynman way back in 1982. And today, technology companies (such as IBM, Microsoft, Google, Intel) and academic institutions (like MIT, and Princeton University) are working on quantum computer prototypes to create a mainstream quantum computer. International Business Machines Corp. (IBM) has said recently that its scientists have built a powerful quantum computing platform and it can be made available for access but remark that it’s not enough for performing most of the tasks. They say that a 50-qubit prototype which is currently being developed can solve many problems which classical computers do today and in the future 50-100 qubit computers would largely fill the gap i.e. a quantum computer with just a few hundred qubits would be able to perform more calculations simultaneously than there are atoms in the known ulimwengu. Realistically speaking, the path to where a quantum computer can actually outperform a classical computer on difficult tasks is laden with difficulties and challenges. Recently Intel has declared that the company’s new 49-qubit quantum computer represented a step towards this “quantum supremacy”, in a major advancement for the company who had demonstrated a 17-bit qubit system only just 2 months ago. Their priority is to keep expanding the project, based upon the understanding that expanding number of qubits is the key to creating quantum computers that can deliver real-world results.

Nyenzo ni ufunguo wa kuunda kompyuta ya quantum

Silicon ya nyenzo imekuwa sehemu muhimu ya kompyuta kwa miongo kadhaa kwa sababu seti yake kuu ya uwezo hufanya iwe inafaa kwa kompyuta ya jumla (au ya kitambo). Walakini, kuhusu kompyuta ya quantum inayohusika, suluhisho za msingi wa silicon hazijapitishwa haswa kwa sababu ya sababu mbili, kwanza ni ngumu kudhibiti qubits zinazotengenezwa kwenye silicon, na pili, bado haijulikani ikiwa qubits za silicon zinaweza kuongezeka na vile vile zingine. ufumbuzi. Katika maendeleo makubwa Intel hivi karibuni sana maendeleo1 aina mpya ya qubit inayojulikana kama 'spin qubit' ambayo hutolewa kwenye silikoni ya kawaida. Spin qubits hufanana kwa karibu na vifaa vya kielektroniki vya semiconductor na hutoa nguvu zao za quantum kwa kutumia spin ya elektroni moja kwenye kifaa cha silikoni na kudhibiti mwendo kwa mipigo midogo ya microwave. Faida kuu mbili ambazo zilisababisha Intel kuhamia upande huu ni, kwanza Intel kama kampuni tayari imewekeza sana katika tasnia ya silicon na kwa hivyo ina utaalamu sahihi katika silicon. Pili, qubits za silicon ni za manufaa zaidi kwa sababu ni ndogo kuliko qubits za kawaida, na zinatarajiwa kushikilia mshikamano kwa muda mrefu zaidi. Hii ni muhimu sana wakati mifumo ya kompyuta ya quantum inahitaji kuongezwa (kwa mfano kutoka 100-qubit hadi 200-qubit). Intel inajaribu mfano huu na kampuni inatarajia kuwa ikizalisha chipsi zenye maelfu ya safu ndogo za qubit na utayarishaji kama huo ukifanywa kwa wingi unaweza kuwa mzuri sana kwa kuongeza kompyuta nyingi na unaweza kuwa kibadilisha mchezo halisi.

Katika utafiti wa hivi majuzi uliochapishwa katika Bilim, muundo mpya ulioundwa wa fuwele za picha (yaani muundo wa fuwele unaotekelezwa kwenye chip ya picha) umetengenezwa na timu ya Chuo Kikuu cha Maryland, Marekani, ambayo wanadai itafanya kompyuta za quantum kufikiwa zaidi.2. Fotoni hizi ndizo kiwango kidogo zaidi cha mwanga kinachojulikana na fuwele hizi ziliwekwa ndani na mashimo ambayo husababisha mwanga kuingiliana. Mifumo tofauti ya shimo hubadilisha jinsi mwanga unavyopinda na kudunda kupitia fuwele na hapa maelfu ya mashimo ya pembe tatu yalitengenezwa. Matumizi kama haya ya fotoni moja ni muhimu kwa mchakato wa kuunda kompyuta za quantum kwa sababu kompyuta zitakuwa na uwezo wa kuhesabu idadi kubwa na athari za kemikali ambazo kompyuta za sasa haziwezi kufanya. Muundo wa chip huwezesha uhamisho wa fotoni kati ya kompyuta za quantum kutokea bila hasara yoyote. Upotevu huu pia umetazamwa kama changamoto kubwa kwa kompyuta za quantum na kwa hivyo chip hii hushughulikia suala hilo na kuruhusu njia bora ya quantum habari kutoka kwa mfumo mmoja hadi mwingine.

Baadaye

Kompyuta za Quantum zinaahidi kuendesha mahesabu zaidi ya kompyuta kuu yoyote ya kawaida. Wana uwezo wa kuleta mapinduzi katika ugunduzi wa nyenzo mpya kwa kufanya iwezekane kuiga tabia ya maada hadi kiwango cha atomiki. Pia hujenga matumaini ya akili bandia na robotiki kwa kuchakata data haraka na kwa ufanisi zaidi. Kuwasilisha mfumo wa kompyuta wa kiasi unaoweza kutumika kibiashara kunaweza kufanywa na shirika lolote kuu katika miaka ijayo kwa vile utafiti huu bado umekamilika na ni mchezo wa haki kwa wote. Matangazo makuu yanatarajiwa katika miaka mitano hadi saba ijayo na tukizungumza kuhusu mfululizo wa maendeleo yanayofanywa, matatizo ya kihandisi yanapaswa kushughulikiwa na kompyuta ya quantum milioni 1 au zaidi inapaswa kuwa ukweli.

***

{Unaweza kusoma karatasi asili ya utafiti kwa kubofya kiungo cha DOI kilichotolewa hapa chini katika orodha ya (vyanzo) vilivyotajwa}

Chanzo (s)

1. Castelvecchi D. 2018. Silicon inafanikiwa katika mbio za quantum-computing. Asili. 553(7687). https://doi.org/10.1038/d41586-018-00213-3

2. Sabyasachi B. et al. 2018. Kiolesura cha optics cha topological quantum. Sayansi. 359(6376). https://doi.org/10.1126/science.aaq0327

Timu ya SCIEU
Timu ya SCIEUhttps://www.ScientificEuropean.co.uk
Kisayansi European® | SCIEU.com | Maendeleo makubwa katika sayansi. Athari kwa wanadamu. Akili zenye msukumo.

Kujiunga na jarida letu

Ili kusasishwa na habari zote za hivi punde, matoleo na matangazo maalum.

Wengi Mpya Makala

Picha mpya ya "FS Tau star system" 

Picha mpya ya "FS Tau star system"...

Exomoon Mpya

Jozi ya wanaastronomia wamefanya ugunduzi huo mkubwa...
- Matangazo -
94,474Mashabikikama
47,680Wafuasikufuata
1,772Wafuasikufuata
30WanachamaKujiunga